The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene
نویسندگان
چکیده
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185-3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3- to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs.
منابع مشابه
Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment
By bioturbating and bio-irrigating the sea floor, macrobenthic organisms transport organic matter and oxygen from the surface to deeper layers, thereby extending the habitat suitable for smaller infauna. Next to these engineering activities, competition, disturbance and predation may also affect the spatial distribution of these smaller organisms. In a controlled laboratory experiment, we studi...
متن کاملEphemeral bio-engineers or reef-building polychaetes: how stable are aggregations of the tube worm Lanice conchilega (Pallas, 1766)?
Dense aggregations of tube-worms can stabilize sediments and generate oases for benthic communities that are different and often more diverse and abundant than those of the surroundings. If these features are to qualify as biogenic reefs under nature-conservation legislation such as the EC Habitats Directive, a level of stability and longevity is desirable aside from physical and biological att...
متن کاملResponse of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil.
PURPOSE Denitrification is an important biochemical process in global nitrogen cycle, with a potent greenhouse gas product N(2)O. Wastewater irrigation can result in the changes of soil properties and microbial communities of agricultural soils. The purpose of this study was to examine how the soil denitrification genes responded to different irrigation regimes. MATERIALS AND METHODS Soil sam...
متن کاملCommunity Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific
The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide re...
متن کاملBiological vs. Physical Mixing Effects on Benthic Food Web Dynamics
Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria) and thus stimulating ...
متن کامل